VERIFIED NECO FURTHER MATH IS READY. GET IT NOW

GET THE BEST GRADE IN YOUR WAEC GCE WITH FUNGRADE WAEC GCE HELP DESK FOR MORE INFO 

YOU CAN CHAT WITH ME 

ON WHATSAPP WITH 08039591676

BBM WITH 563290D3

VERIFIED NECO JUNE/JULY 2015
EXAM DAY: FRIDAY

SUBJECT: FURTHER MATH

Further maths obj

1BBEDEDABCA
11DCBBABDABD
21AECCBEACBA
31DAACBDEEBD
41CCECBDCADA
Theory
Further maths obj
1
P=15kg(15N)
Efx=8cos50degrees-10cos60degrees-150cos90de
=8(0.642 -10(0.5000)-150(0)
=5.142-5
=-0.1424N
Efy=8sin50degrees
+10sin60degrees-150sin90degrees
=8(0.7660)+10(0.8660)-150(1)
=6.128+8.660-150
=-135.242N
i)Resultant of force R=Sqroot
(Efx^2+Efy^2)
=sqroot(-0.1424)^2+(-135.242)^2
=sqroot( 0.020+18282.285)
=sqroot( 18282.305)
=135.21N
(1ii)
let titat be the direction odf the
resultant force
tan tita= Efx/Ef
tan tita=-135.212/-0.1424
=949.5225.
tita=tan^-1(949.5225)
=89.94 degree
(1iii) acceleration
from P-R=F
i.e 150-135.21=14.74
ma=14.79
a=14.79/m=14.79/150g
=0.986ms^-1
2
a)From S=ut-1/2at^2
29=3.89*15-1/2*a*15^2
29=58.09-0.5*a*225
29-58-58.05=-0.5*a*225
-29.05=-112.5a
a=29.05/112.5
a=0.26m/s^2
b)Total distance=21m+8m=29m
Total time=10+5=15s
from S=(v+u/2)t
v=0,s=29m,t=15s
29=(0+u/2)15
29=(u/2)15
2*29=15u
58=15u
=>u=58/15
therefore initial velocity u=3.87m/s
(6i)
from 3x-y+11=0
-y=-3x-11
y=3x+11(comparing to y=mx+c)
gradient m=3,
from equation of straight line
y-y1=m(x-x1)
(x1,y1)=(1,-5) or x1=1, y1=-5
y-(-5)=3(x-1)
y+5=3(x-1)
y=3x-3-5
y=3x-8
or y-3x+8=0 or 3x-y-8=0
(6ii)
from y=3x+4 and y=2x-1
let y1=3x+4 nand y2=2x-1
therefore m1=3, m2=2
let tita be the angle between the
two lines.
tan titat=m1-m2/(1+m1m2)=(3-2)/
(1+3(2))
tan tita= 1/1+6 =1/7
tita= tan^-1(1/7)
tita= 8.13 degree
4
i)seven male surgeons can not be
formed from a team consisting of
four men
Also three female surgeons cannot
be formed from two women
Hence the numbers of way is
i)0 ways
ii)0 ways
5
i)for -2<_x<_2
ie x=-2,-1,0,1,2
for x=-2,f(x)=(-2)^2+2=4+2=6
for x=-1,f(x)=(0)^2+2=1+2=3
for x=0,f(x)=(0)^2+2=0+2=2
for x=1,f(x)=1^2+2=1+2=3
for x=2,f(x)=2^2+2=4+2=6
Hence the co-domain are 2,3,6
ii) f is onto
Reason since f(-2)=f(2)
f(-1)=f(1)
therefore f is onto
iii)f(x)=x^2+2=y
=>x^2+2=y
x^2=y-2
x=sqroot(y-2)
f^-1(x)=sqroot(x-2)
f^-1(11)=sqroot(11-2)
=sqroot(9)
=3 0r -3
(7)
a)Given a*b=a+b+2ab where a,bER
To show wether * is commutative
a*b=a+b+2ab
b*a=b+a+2ba=a+b+2ab=a*b
Hence, the operation is
commutative
b)a*e=a+e+2ae=a=e*a
=>a+e+2ae=a
=>e+2ae=a-a
=>e(1+2a)=0
=>e=0/1+2a
=>e=0
the identity element e=0
7c)a*a^-1
=>a+a^-1+2aa^-1=0
a=a_1(1+2a)=0
a^1(1+2a)=0-a
a^-1(1+2a)=-a
a^-1=-a/1+2a
the inverse element a^-1=-a/1+2a
Any element E/ -a/1+2a has no
inverse
9
Given the curve f(x)=x^3-6^2-15x-1
dy/dx=3x^2-12x-15
of the turning point dy/dx=0
=>3x^2-12x-15=0
or x^2-4x-5=0
x^2-5x+x-5=0
x(x-5)+1(x-5)=0
(x-5)(x+1)=0
x=5 or x=-1
d^2y/dx^2=6x-12
i)The gradient of x=1=dy/dx x=1
=3(1^2)-12(1)-15
=3(1)-12-15
=3-12-15
=-24
9ii)when x=5,d^2y/dx^2 x=5
=6(5)-12
=30-12
=18
when x=-1,d^2y/dx^2 x=-1
=6(-1)-12
=-6-12
=-18
since d^2y/dx^2>1 when x=5, the y
is minimum
since d^2y/dx^2<1 when x=-1,then
y is maximum at x=-1
when x=5,f(x)=5^3-6(5^2)-15(5)-1
=125-150-75-1
=the maximum point is (5,-101)
when x=-1,f(x)=
(-1)^3-6(-1)^2-15(-1)-1
=-1-6+15-1
=7
Hence the maximum point is (-1,7)
10
Given thatalpha,beta are the roots of
2x^2-x+4
where a=2,b=-1,c=4
(alpha+beta)=-b/a, =-1/2
(alpha*beta)=c/a, =4/2=2
i)alpha^2+beta^2=(alpha
+beta)^2-2alpha*beta
=(-1/2)^2-2(2)
=1/4-4/1=1-16/4
=-15/4
ii)alpha^3+beta^3=(alpha
+beta)^3-39alpha*beta)
=(-1/2)^3-3(2)(-1/2)
=-1/8-6(-1/2)=-1/8+3
=-1+24/8
=23/8
iii)alpha/beta+beta/alpha
=(alpha^2+beta^2)/(alpha*beta)
=(-15/4)/2
=-15/8
10b)Given (2a+3)x^2-6x+4-a
the expression is a perfect square of
b^2=4ac
ie(-6)^2=4(2a+3)(4-a)
36=4(8a-2a^2+12-3a)
9=8a-2a^2+5a+12
-2a^2+5a=12-9=0
-2a^2+5a+3=0
2a^2-5a-3=0
2a^2-6a+a-3=0
2a(a-3)+1(a-3)=0
(a-3)(2a+1)=0
a-3=0 or 2a+1=0
a=3 or a=-1/2
10c)Given x-2y=2----eq1
5x^2+3y^2=3---eq2
from(1)x=2+2y---eq3
substitute for x in eq(2)
5x^2+3y^2=3
5(2+2y)^2+3y^2=3
5(4+8y+4y^2)=3y^2=3
20+40y+120y^2+3y^2=3
23y^2+40y+20-3=0
23y^2+23y+17y+17=0
23y(y+1)+17(y+1)=0
(23y+17)(y+1)=0
23y+17=0 or y+1=0
y=-17/23 or y=-1
From x=2+2y
when y=-17/23,x=2+2(-17/23)
=2-34/23
=46-34/23=12/23
when y=-1,x=2+2(-1)
=2-2=0
the solutions are x,y (12/23,-17/23)
or (0,-1)
(12ai)
please note we used n as
intersection here
p=-2i+2j, q=2i+4j and r=4i+5j to
show that P,Q and R are collinear.
we show that (PnQnQ)=0.
PnQnR=
matrices
row 1 -2,2,1|
row2: 2,4,1
row3:4,5,1
=-2(4-5)-2(2-4)+1(10-16)
=-2(-1)-2(-2)+1(-6)
2+4-6=0
hence P,Q and R are collinear.
(12aii)
note that this arrow(=>) will be on
top of PQ
|=>PQ|=|-2(2)+2(4)|=|-4+8|
=sqr root((-4)^2+8^2=sqr root
(16+64)= sqr root (80)
=sqr root(16*5)= 4root5
|=> QR|= |2(4)+4(5)|=|8+20|
=sqr root((8^2)+(20^2)
=sqr root(64+400)
=sqr root (464)= sqr root(16*29)
=4root 29
hence|=> PQ| br /> (12bi)
scalar product of r and s= r.s
< r= (49/32)i+3j=(49i+99j )/33, =>
r= 49i+ 99j
s= 495i-124j
r.s=(49i+99j).(495i-124j)
=(149*495)-
(99*124)=24235-12276=11979
12bii)let the angle between r and s
be tita
since r.s=|rs|cos tita
therefore cos tita=r.s/|rs|
|rs|=|(49i+99j)(495i-125j)|
=|24255i-12276j|
=sqroot(24255^2)+(-12276^2)
=sqroot(739005201)
=27184.6501
therefore cos
tita=11979/27184.6501
=0.4407
therefore tita= cos^-1(0.4407)
=63.85degrees

SUBSCRIBERS GET THEIR ANSWERS EARLY


YOU CAN CHAT WITH ME

ON WHATSAPP WITH 08039591676

BBM WITH 563290D3


Thanks For You Reading The Post We are very happy for you to come to our site. Our Website Domain name https://timeparol.blogspot.com/.
Newer Posts Newer Posts Older Posts Older Posts

More posts

Comments

Post a Comment